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Abstract. Pursuing the work of Penney and Sherrington, we determine theoptimal continuous-
weight perceptron which, on clipping, correctly predicts the largest number of weights for the
binary perceptron with maximum stability. We calculate the fraction of correctly predicted
binary weights when only the continuous weights stronger than a certain threshold are clipped.
We finally carry out simulations for a perceptron with 50 weights to test the practicability of
different learning strategies.

Neural networks must learn before they can perform. During the learning phase, the synaptic
strengths are adjusted so as to reproduce a given set of training examples, called patterns.
Information about these patterns is thereby stored in the synapses of the network. If the
learning process has been successful, the network will be able to perform well on new
input examples too. For a network that functions as a memory device [1], it should be
able to recognize one of the stored patterns when a noisy version of it is presented. If the
classification of the training examples is governed by an underlying rule [2], the network
should be able to generalize, i.e. implement the rule on a new input. In the following
we will examine the learning problem for a simple perceptron network that functions as a
memory device but the discussion could easily be extended to the generalization problem.

Several good learning algorithms exist for a perceptron whose synapses may take a
continuum of values. The simple Hebb rule splendidly stores a small number of random
patterns. The more sophisticated AdaTron algorithm [3] yields the maximum stable network
(MSN) [4], provided exact storage of the patterns is possible. By contrast, for networks
with discrete synapses and in particular for its simplest example, the binary perceptron, no
reliable algorithm exists except complete enumeration of all possible states of the synapses.
As the number of these states grows exponentially fast with the number of synapses, this
method is practically limited to networks with fewer than 30 synapses.

In this paper, we reconsider the learning problem for the binary perceptron. We callN

the number of input units andp = αN the number of patterns{ξµ, ζµ} (µ = 1, . . . , p) to
be stored. TheN -dimensional input vectorsξµ are randomly chosen on the surface of the
hypersphereξ · ξ = N and the outputsζµ are random±1. Learning involves findingN
synaptic strengths or weightsBi = ±1 (i = 1 . . . N) which make the perceptron produce
the correct outputζµ for each of thep inputsξµ. This is equivalent to demanding that the
p aligning fields3µ = ζµ

∑
i Biξ

µ

i /
√

N all be positive. The stronger condition3µ > KB

(µ = 1 . . . p) with the largest possible value for the stability boundKB defines the maximum
stable binary network (MSB).

Many characteristics of the MSB have been calculated [5] in the thermodynamic limit
N → ∞. Unlike the continuous-weight vector MSN which is unique for all values of
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the storage ratioα, the MSB weights are not unique [6] except forα very close to zero.
For larger values ofα, many different binary vectors exist, all with the same maximum
stability KB(α). Near the saturation limitα = 0.83, these binary vectors differ in as much
as 20% of their components. When in the following we refer to the MSB in our theoretical
calculations, we always mean theaverageover the set of these binary vectors. By contrast,
in numerical simulations for finite values ofN , there exists a single binary vector with
maximum stability. The degeneracy occurring in the limitN → ∞, disappears for finiteN
but we expect many different binary vectors with stabilities spread over a narrow range of
values.

A number of learning schemes have been proposed for the binary perceptron. They can
conveniently be grouped in two classes. One kind of approach operates directly in the set
of 2N binary vectors which are the corners of theN -dimensional hypercube. Using a cost
function that penalizes small or negative values of3µ, one tries to find the corner of the
hypercube with lowest cost using general optimization techniques like simulated annealing
[7, 8] or genetic algorithms [8, 9]. The problem is extremely hard, due to the huge number
of local minima in which the minimization procedure may get trapped. Nevertheless, in its
most sophisticated form [8], the method has met with some success for networks as large as
N = 100, but the results deteriorate with increasingN . The alternative and more appealing
approach [6, 9, 11] tries to draw some advantage from the fact that efficient algorithms exist
for the learning problem with continuous weights. It is based on the reasonable assumption
that the MSN and MSB weights are correlated since both try to maximize the stability. It
should therefore be possible to extract useful information about the MSB weights from the
knowledge of the MSN.

The simplest way to construct a binary vector from a vector with continuous components
is by clipping. Although this generates the binary vector nearest to the original one, their
moderate typical overlap of

√
2/π gives a hint that clipping is not a gentle operation. The

destructive effect of clipping becomes manifest by looking at the stability-field distribution
of the clipped MSN [6]. This finding, however, need not imply that the clipped MSN vector
is of no use. Penney and Sherrington [6] have calculated the fraction of components in the
clipped MSN that correctly predict the corresponding component in the MSB. The fraction
is large, going from 90% forα = 0.1 down to 80% near the saturation limitα = 0.83. These
numbers demonstrate that, even though clipping the MSN does not directly provide a good
approximation to the MSB, it does supply a good initial vector from which a supplementary
training process may get started. The additional training, moreover, can be confined to the
exploration of the neighbouring vectors of order up to 0.2N .

A further reduction of the problem could be achieved if one were able to identify the
correct components (or part of them). On the basis of numerical simulations for small
systemsN 6 25, Penney and Sherrington [6] make the interesting suggestion that the
large-size components of the MSN are very likely to give the correct prediction for the
MSB. This means that the 20% wrong signs in the clipped MSN must primarily be sought
among the 40% weakest weights of the MSN. This suggestion, if correct for generalN ,
would drastically reduce the effective size of the original problem as 60% of the MSB
components could directly be obtained from the MSN. The remaining components would
then be determined by complete enumeration or by general optimization techniques.

The first problem we address in this paper is the question whether the MSN is the best
choice among all continuous-weight vectors for use as a starting vector in a search for the
MSB. For this purpose, we consider a general class of learning algorithms, defined by means
of a cost function with a unique minimum on the hypersphereJ2 = N . More specifically,
we consider cost functions of the formE(J) = ∑

µ V (λµ) with λµ = ζµJ ·ξµ/
√

N [12, 13].
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Common learning rules like Hebb or MSN are contained in this class of algorithms [14].
Using standard techniques [6, 15], it is possible to derive a general equation for the overlap
r = J · B/N of the continuous-weight vectorJ which minimizesE(J) and the MSB
vectorB. We write down the result and refer to [6] for details of a similar calculation :

r = α

∫
Dt (λ0 − t) gr(t). (1)

As usual, Dt = dt exp(−t2/2)/
√

2π . The first factor(λ0 − t) in the integrand depends on
the choice ofV (λ) while the second factorgr(t) is largely determined by the MSB. The
functionλ0(t, x) is the value ofλ which minimizesV (λ)+(λ− t)2/2x wherex must satisfy
the saddle-point equation:

1 = α

∫
Dt (λ0(t, x) − t)2. (2)

The functiongr(t) is expressed as

gr(t) =
√

1 − q√
2π

∫
ds

e
− (s−γ t)2

2(1−γ 2)√
2π(1 − γ 2)

e− (KB −√
qs)2

2(1−q)

H
(

KB−√
qs√

1−q

) (3)

whereH(x) = ∫ ∞
x

Dt . The functiongr(t) is determined by the order parameterq and the
stability boundKB of the binary perceptron [5]. Its dependence on the overlapr comes via
γ , a shorthand forr/

√
q. For a given choice ofV (λ), one has to solve equation (1) for

r(α).
We now want to determine the optimal potential which yields the largest possible overlap

with the MSB. To this end, we combine equations (1) and (2) to obtain [16, 17]

r2 = α
[
∫

Dt (λ0 − t)gr(t)]2∫
Dt(λ0 − t)2

. (4)

Using the Schwartz inequality yields an upperbound for the r.h.s. of (4). Thusr2 6
α

∫
Dt(gr(t))

2 with the equality sign holding iffλ0 − t = Cgr(t) whereC is an arbitrary
constant. The equality sign defines an upperbound forr becauser2/

∫
Dt(gr(t))

2 is
independent of the choice ofV (λ) and a strictly increasing function ofr. The maximum
overlap obtainable within the considered class of algorithms is the solution of the equation

r2 = α

∫
Dt (gr(t))

2. (5)

On clipping a continuous vectorJ that has overlapr(α) with the MSB, the fraction of
components that agree with the MSB is given by [6]

f = 1

2
+

∫
Dz tanh

(√
q̂z

)
H

(
− γ̂√

1 − γ̂ 2
z

)
(6)

where q̂ is the order parameter conjugate toq [5] and γ̂ is a shorthand forr/
√

q̂(1 − q).
The sole dependence onV (λ) is through the overlapr hidden inγ̂ . The maximum possible
value forf is obtained by using the largest value forr i.e. the solution of (5).

Figure 1(a) shows the fraction of binary weights that are correctly predicted by clipping
the optimal continuous-weight vector and by clipping the MSN. The difference only shows
up at large values ofα where it is about 2%. For comparison, we also show the upperbound
f = (1 + √

q)/2 which follows from the fact that any two MSB vectors have overlapq

[18].
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Figure 1. (a) The fraction of binary weights in the MSB that are correctly predicted by clipping
the continuous weights of the MSN and of the networks defined by the optimal potential and its
substitute 1/(λ−KB). The dotted curve shows a simple upperbound. (b) The same fraction for
the MSN and the optimal potential when only the strongest 20% (upper curves), 40% (middle
curves) or 60% (lower curves) weights are clipped.

With the aim of better understanding the role of the optimal potential we have focused on
the centre-of-mass of the continuous Gibbs ensemble with stabilityKB and have calculated
its overlap with the MSB. This turns out to be almost equal to the optimal overlap. As in
the case of supervised learning [13], we therefore use a simple substitute for the optimal
potential which is equal to infinity whenλ < KB and given by 1/(λ − KB) whenλ > KB .
As seen in figure 1(a), the value off for this substitute coincides almost perfectly with the
result for the optimal potential.

In a second problem, we want to assess the validity of the Penney–Sherrington
suggestion for large values ofN . For this purpose, we focus on the components of the
continuous-weight vectorJ that are larger than a thresholdJ0 and calculate the probability
that any of these components corresponds to+1 in MSB. This probability rapidly increases
with increasingJ0, thus substantiating the Penney–Sherrington suggestion. A derived
quantitative measure for its validity is the fraction of these large components that correctly
predict the MSB component. It is given by a direct extension of (6)

f (J0) = 1

2
+ 1

H(J0)

∫
Dz tanh

(√
q̂z

)
H

(
J0 − γ̂ z√

1 − γ̂ 2

)
. (7)

This fraction is shown in figure 1(b) for the optimal potential and for the MSN for three
values ofJ0 corresponding to clipping the 20%, 40% and 60% strongest weights.

We have tested the practicability of different learning strategies by performing
simulations for a perceptron withN = 50. The results are shown in figure 2. The full
curve displays the theoretical valueKB(α) [5]. The data points show the minimum pattern
stability as obtained from three different strategies. Each point represents the average over
100 random samples. In all cases, we start by determining the MSN using AdaTron. We
then follow three straightforward strategies using the MSN as starting vector. Results of
similar calculations in which the optimal potential is used are not presented here because,
for N = 50, the increase in pattern stability is very small. From our theoretical results, we
expect the difference to grow withN .

The simplest strategy is plain clipping. As expected, it gives a poor lower bound
for KB(α). The next strategy, being the straightforward implementation of the Penney–
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Figure 2. Minimum pattern stabilityK as a function ofα as determined from numerical
simulations for a perceptron withN = 50 following different strategies described in the text.

Sherrington suggestion, consists in clipping the strongest 30 weights and determining the
remaining components by enumerating all 220 possibilities. This second strategy is fast and
yields a good estimate forKB(α) at low α. Not surprisingly, the estimate deteriorates at
higher values ofα where a growing fraction of clipped components will have the wrong
sign. Our third and more expensive strategy consists in clipping the strongest 20 weights
only, leaving 30 components to be determined by further training. Rather than enumerating
all 230 possibilities, we confine the search for these 30 components to the vector obtained by
clipping the remainder of the MSN and all its neighbours up to tenth order. This restriction
entails a reduction of the number of explored vectors by a factor 20. Nevertheless, the
agreement with the theoretical curve becomes excellent for smallα and, at larger values
of α, the discrepancy is small. It is clear that many more sophisticated strategies can be
designed that may remove this discrepancy. Further strategies will be presented elsewhere
together with numerical results for larger values ofN .
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